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Ueber die Theorie der Erscheinungen der Capillaritát.

l. Eine schwere Flüssigkeit hat im Zustande der Ruhe eine horizontale freie Oberfläche, wenn
diese Oberfläche hinreichend weit von den begrenzenden Flächen der Wände des Gefässes, das die
Flüssigkeit enthält, entfernt ist. Beobachtet man "aber diese Oberfläche in der Nähe der begrenzenden
Wand, so sieht man, dass die freie Oberfläche zunächst bei dieser entweder in einer concaven Fläche an
der Wand ansteigt, oder mit convexer Fläche abwärts geht, und nur in den seltensten Fällen, vielleicht
nie bis an die Wand eben bleibt. Noch auffallender tritt diese Erscheinung auf, wenn man die Flüssig-
keit in einem weiten Gefásse mit derselben Flüssigkeit in einem sehr engen Gefásse, etwa einem sehr
engen Róhrchen, einem Haarróhrchen, communiciren lüsst. Statt wie diess nach den Gesetzen der
Hydrostatik bei alleiniger Wirkung der Schwere folgt, in beiden Gefássen durch eine Horizontalebene
begrenzt zu sein, steht die Flüssigkeit in dem Haarróhrchen entweder hóher oder tiefer als in dem
weiteren Gefüsse, und die Oberfläche der Flüssigkeit ist dabei in dem engen Röhrchen im ersten Falle
concav, im zweiten convex nach oben. Diese und verwandte Erscheinungen nennt man die Erscheinungen
der Capillarität, und zwar spricht man von einer Capillarerhebung oder von einer Capillardepression,
je nachdem die Flüssigkeit in dem engen Röhrchen höher oder niederer steht als in dem mit der Röhre
verbundenen weiteren Gefüsse.

2. Von einer Flüssigkeit mit vollkommener Beweglichkeit ihrer Theile lehrt die Hydrostatik, dass
die freie Oberflüche in der Ruhe rechtwinklich stehen müsse auf der Richtung der Kraft, welche auf
die Theilchen der Flüssigkeit in der Oberflüche einwirkt. Ist diese nur die Schwerkraft, so muss also
diese Oberfläche horizontal sein. Diess ist aber bei den Flüssigkeiten in der Nähe der begrenzenden
Wand nicht der Fall, dort ist die Oberfläche gekrümmt, entweder gegen die Wand ansteigend, concav
nach oben, oder von der Wand abgekehrt, convex nach oben. Es muss also hier noch eine weitere
Kraft neben der Schwere auftreten; der nächste Gedanke ist, eine anziehende Kraft der Wand auf die
Flüssigkeit im ersten, eine abstossende Kraft im zweiten Falle anzunehmen. Dass eine solche Attraction
zwischen der Materie der Wand und den Flüssigkeiten stattfindet, weiss man aus den Versuchen mit
Adhäsionsplatten, welche man von den Flüssigkeiten, mit welchen sie in Berührung stehen, abzureissen
sucht. Man weiss, dass hierzu eine ziemlich grosse, messbare Kraft erforderlich ist, man hat aber auch
bei Glas und Quecksilber und andern Platten und Flüssigkeiten, bei welchen eine Capillardepression und
keine Erhebung eintritt, immer eine Anziehung, niemals eine Abstossung bei den Versuchen mit
Adhäsionsplatten gefunden. Nur zeigt sich ein Unterschied: bei den Platten, an welchen die betrachtete
Flüssigkeit Capillaransteigung zeigt, ist bei dem Versuche über die Adhäsion die Platte nach dem
Abreissen noch benetzt, mit einer Flüssigkeitsschichte überzogen, bei den Platten aber, an welchen
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diese Flüssigkeit Depression zeigt, ist die Platte nach dem Abreissen nicht benetzt, sie ist nach dem
Abreissen trocken. Bei den ersten Platten wird daher nicht die Platte von der Flüssigkeit, sondern
diese von sich selbst abgerissen, es muss also auch eine Attraction der Flüssigkeitstheilchen auf sich
selbst stattfinden, eine Cohäsion der Flüssigkeit; diese Cohäsion der Flüssigkeit ist aber bei den ersten
Platten kleiner als die Adhàüsion der Flüssigkeit an'die Platte, bei den zweiten dagegen grösser. Dort
trennt sich daher die Flüssigkeit leichter von sich selbst als von der Platte, hier trennt sich die
Flüssigkeit leichter von der Platte als von sich selbst.

3. Die Versuche über die Adháüsion haben ferner gelehrt, dass die Anziehung zwischen einer
Platte und einer Flüssigkeit durchaus nicht bemerkt wird, so lange der Abstand der Platte von der
Flüssigkeit, wenn auch noch so klein, merklich und messbar ist. Man sagt daher, die Anziehung zwischen
einem festen und einem flüssigen Körper finde nur in unmessbar kleiner Entfernung statt, vielleicht auch
nur bei unmittelbarer Berührung. Dasselbe findet bei der Attraction der Flüssigkeiten auf sich selbst
statt; Hagen hat noch neuerlich gezeigt, dass zwei Wassertropfen nicht zusammenfliessen, so lange nur
ein Lichtstrahl zwischen ihnen durch gehen kann.

4. Diese beiden Krüfte, die Anziehung der Wand auf die zunáchst liegende Flüssigkeitsschichte,
und die Anziehung der Flüssigkeitstheilehen auf einander, sind es, welche die Erscheinungen der
Capillaritàt hervorrufen.

Betrachtet man ein Element der Flüssigkeit, das in der gekrümmten Oberflàáche liegt, aber in
messbarer Entfernung von der nächsten Wandfläche, auf das also die Anziehung der Wandfläche nicht
mehr unmittelbar einwirkt, so wirken auf dieses Element, dessen Masse mit m bezeichnet werden soll,
die Schwerkraft vertical abwärts mit der Grösse mg, wenn g wie gewöhnlich die Beschleunigung der
Schwere bezeichnet; dann die Attraction der Flüssigkeit, welche, da nur die Theile eine merkbare
Wirkung hervorbringen, welche von m in unmessbar kleiner Entfernung wegliegen, und weil um die
Normale durch m zur Oberfläche der Flüssigkeit in unmessbar kleiner Entfernung von m die Flüssigkeit
symmetrisch angeordnet ist, nach der Richtung der Normalen geht; ihre Grösse soll mA, ihre Richtung n
sein. Nun kann man das Gewicht mg zerlegen. in eine Componente nach n, die mg cos (ng) heissen
soll, und in eine Componente, die zu n normal ist, also der Oberfläche der Flüssigkeit an dieser Stelle
parallel geht, und welche mg sin (ng) ist. Die beiden ersten Kräfte mA und mg cos (ng) stehen
normal auf der Oberfläche der Flüssigkeit, die letzte liegt in der Oberfläche; sollten für diese Flüssigkeit
die Gesetze der Hydrostatik gelten, d. h. die Gesetze des Gleichgewichtes der Flüssigkeiten, in welchen
vollkommen freie Beweglichkeit der Theilchen über einander vorausgesetzt wird, so könnte bei diesen
Kräften an der Oberfläche die Flüssigkeit nicht im Gleichgewichte sein, weil die Resultirende dieser
Kräfte nicht normal auf der Oberfläche steht. Mit dieser Behauptung fällt der Ausspruch von Poisson
zusammen, dass nach der Laplace’schen Theorie eine gekrümmte Oberfläche bei Flüssigkeiten nicht
stattfinden könne, und also diese Theorie die Capillarerscheinungen nicht erkläre.

Da aber die Erfahrung zeigt, dass die Flüssigkeiten im Gleichgewichte eine solche gekrümmte
Oberfläche in der Nähe einer Wandfläche zeigen, so müssen wir daraus schliessen, dass in der Schichte
zunächst der Oberfläche die in der Hydrostatik vorausgesetzte freie Beweglichkeit nach allen Richtungen
nicht mehr stattfinde, dass vielmehr das oben betrachtete Theilchen m von der zunächst liegenden mit
der Kraft mg sin (n g) nach der Tangente an die Oberfläche gehalten werde, und rückwärts einen gleich
grossen Zug auf diese nächstliegenden Theile der Flüssigkeit ausübe. Die Theilchen an der Oberfläche
der Flüssigkeit werden daher in der Richtung der Oberfläche gespannt sein, während hingegen ihre
Unterlage nach der Normalen an die Oberfläche durch die Anziehung dieser, wie durch die eine
Componente der Schwerkraft gedrückt werden, also in dieser Richtung eine Pressung erleiden. Wir
wissen, dass tropfbare Flüssigkeiten zusammendrückbar sind, und dass sie einer solchen Zusammen-
drückung mit sehr grosser Kraft widerstehen. Ebenso muss man annehmen, dass die einzelnen Atome
der Flüssigkeit in eine etwas grössere Entfernung gebracht werden können, als die im gewöhnlichen
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Zustande ist, und dass sie sich dann mit sehr grosser Kraft zusammenziehen wollen, so lange sie nicht
so weit auseinandergebracht sind, dass eine Anziehung nicht mehr stattfindet, dass sie auseinander-
gerissen sind, wie man bei einem festen Kürper sagen würde. Die Flüssigkeiten zeigen für sehr kleine
Aenderungen der Lage ihrer Atome analoge Erscheinungen wie feste Kórper, die Gleichheit der Pressung
rings um einen Punkt ist nicht unter allen Umstünden und namentlich nicht an der Oberflüche der
Flüssigkeiten vorhanden. Die horizontale Schiehte in einem an einem Stabe hángenden Wassertropfen
trägt die unter ihr liegenden Wassertheile; sie ist dadurch ausgedehnt, gespannt; ihre Spannung ist dem
Gewichte der unter ihr liegenden Wassertheile gleich. Durch. das Bestreben der Theile in dieser
Schichte, in die gegenseitige Nähe zu kommen, welche dem nicht gespannten oder gepressten Wasser
angehärt, trägt sie das Wasser unter ihr und pflanzt den Zug dieses Wassers auf die über ihr liegende
Schichte fort. Wir werden aber spüter sehen, dass in der That hierbei nur die Oberflächenschichte des
Wassertropfens in Spannung ist, dass das Wasser in dieser Oberfláchenschichte gleichsam wie in einer
Haut liegt, welehe durch das Gewicht des Wassers in ihr gespannt ist.

5. Das Volum einer tropfbaren Flüssigkeit àndert sich selbst bei einem sehr starken Druck auf
die Oberfläche dieser Flüssigkeit nur äusserst wenig. Man wird daher selbst dort, wo die Pressung oder
Spannung in einer Flüssigkeit schon sehr beträchtlich ist, bei der Berechnung der Masse der Flüssigkeit
in jenem Volume die Dichte als unverändert durch diese Pressung oder Spannung annehmen können,
ohne einen merklichen Fehler zu begehen. Wir werden in der Folge bei der Berechnung der Massen
der Flüssigkeiten deren Dichte immer constant annehmen.

6. Betrachtet man ein kleines begránztes Volum im Innern einer ruhenden, schweren Flüssigkeit,
so sind die Krüfte, welche auf die in diesem Volum enthaltene Masse wirken, die Schwere, die Attraction
der umgebenden Flüssigkeit und endlich deren Pressungen auf die Oberflàche jenes Volums, diese Kráfte
müssen an dem betrachteten Flüssigkeitsvolume im Gleichgewichte sein. Die Attraction der Flüssigkeit
wirkt, abgesehen von der Gravitation, welche bei so kleinen Massen gegen die Attraction der Erde und
die daher rührende Schwere verschwindend kleinist, nur auf unmessbar kleine Entfernungen. Beschreibt
man daher um das als unendlich klein. betrachtete Volum, mit einem Radius gleich der Entfernung, in
welcher die Attraction unmerklich wird, eine Kugel, so wird, wenn diese ganz in die Masse der Flüssigkeit
füllt, die Attraction auf die Massen in dem betrachteten Volume nach allen Seiten hin gleich gross
werden, und sich daher gegenseitig aufheben. Diese Attraction ist daher fiir alle von der Oberfléiche der
Flüssigkeit in messbarer Entfernung liegenden Theile der Flüssigkeit gleich Null.

Das Gleichgewicht verlangt dann, dass auch die Pressungen rings um jenes unendlich kleine
Volum, dessen Gewicht gegen diese Pressungen verschwindend klein ist, gleich gross sind, dass also im
Innern der Flüssigkeit für alle Punkte, die in messbarer Entfernung von der Oberflüche liegen, die
gewöhnlichen Gesetze der Hydrostatik gelten, deren Ausgang eben jene Gleichheit der Pressung
rings um einen Punkt der Flüssigkeit ist.

Liegt aber das betrachtete Volum der Flüssigkeit so nahe an der Oberfläche, dass die Wirkungs-
sphäre der Attraetion, welche um das betrachtete Volum, wie oben beschrieben wird, zum Theil über
diese Oberfläche der Flüssigkeit hinausragt, so ist die Attraction nach dieser Seite hin kleiner als nach
der entgegengesetzten, und es bleibt also nach dem Innern der Flüssigkeit hin ein Ueberschuss von
Attraction. Tritt die oben beschriebene Attractionssphäre über einen ebenen oder stetig gekrümmten
Theil der Oberfläche hervor, so kann auch im letzten Falle der Theil der Oberfläche, welcher in dieser
Kugel liegt, als eben behandelt werden, weil die Krümmungshalbmesser der Oberfläche messbar gross
oder unendlich gross sind, während der Halbmesser der Attractionssphäre nur unmessbar klein ist.

Für’s Gleichgewicht des betrachteten Volums wird es nothwendig sein, dass sich die Pressung auf
die Oberfläche des Volums in der Richtung der Normalen zur Oberfläche der Flüssigkeit beim Durchgang
durch das Volum um jenen Ueberschuss der Attraction ändert, während die Pressungen in der Richtung
parallel zur Oberfläche der Flüssigkeiten wieder nur den Unterschied zeigen werden, welcher dem
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Theil der Oberfläche hervor, so kann auch im letzten Falle der Theil der Oberfläche, welcher in dieser

Kugel liegt, als eben behandelt werden, weil die Krümmungshalbmesser der Oberfläche messbar gross
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Für’s Gleichgewicht des betrachteten Volums wird es nothwendig sein, dass sich die Pressung auf

die Oberfläche des Volums in der Richtung der Normalen zur Oberfläche der Flüssigkeit beim Durchgang

durch das Volum um jenen Ueberschuss der Attraction ändert, während die Pressungen in der Richtung

parallel zur Oberfläche der Flüssigkeiten wieder nur den Unterschied zeigen werden, welcher dem  
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Gewichte des betrachteten Flüssigkeitsvolums entspricht. Diese Pressungen parallel der Oberfläche der
Flüssigkeit werden aber wesentlich andere sein können als die nach der Normalen.

Tritt die Sphäre der Attraction über einen Theil der Oberfläche, welcher eine scharfe Kante
enthält, also z. B zum Theil über die freie Oberfläche, zum Theil über die an einer Wand des Gefässes
anliegende Oberfläche, so wird die Richtung der Attraction in anderer Weise bestimmt werden müssen.
Wir beschäftigen uns damit nicht, weil wir die Antwort auf diese Frage in dem Folgenden ‚nicht
nothwendig haben. ;

7. Nach diesen Vorbetrachtungen untersuchen wir das Gleichgewicht eines kleinen Flüssigkeits-
elementes, das an einer Wand oder der freien Oberfläche anliegt. Das Element begrenzen wir. auf
der Grenzfliche durch zwei durch den betrachteten Punkt gezogene Bogen ode und o,d0 der
Hauptkrümmungskreise der Grenzflüche in diesem Punkte, deren Halbmesser o und o, sein sollen; ferner
durch zwei zu jenen parallele Bogen. Durch die Normalen und diese Bogen legen wir Ebenen, und
schneiden endlich das Element, das zwischen diesen vier Ebenen liegt, durch eine in der Tiefe n unter
der Grenzflüche liegende parallele, d. h. überall von dieser gleich weit abstehende Fläche ab. Denkt
man alle Seiten dieses Elementes unendlich klein, so ist sein Volum

ee, nd dô,
und seine an einander stossenden Begrenzungsflächen stehen rechtwinklich unter einander.

Für n nehmen wir die Entfernung, in welcher von der Grenzfläche weg sowohl die Attraction der
Flüssigkeit als die Anziehung der Wand unmerklich wird, also eine unmessbar kleine Grösse, aber
strenge genommen keine unendlich kleine, wodurch die Rechnung den Charakter einer genüherten
bekommt.

Die Attraction der Flüssigkeit auf dieses Element kann, wenn A die Dichte der Flüssigkeit
bedeutet, durch

4Aoo.ndgpdo
vorgestellt werden, wo A eine von der Art der Flüssigkeit abhängige Constante ist. Die Richtung dieser
Kraft ist die Richtung der Normalen zur Grenzfläche in die Flüssigkeit, was kurz die Richtung n heissen
soll. Ihr direct entgegen wirkt die Attraction der Wand, welche ebenso durch

4Boo,ndgd8
vorgestellt werden kann, wo B eine von der Art der Wand und der Art der Flüssigkeit abhüngige
Constante ist.

In der Richtung von n ergibt sich hieraus die Kraft

4 (A—B) oo,ndgd0.
Bezeichnet man mit iy den Winkel, welchen n mit der Richtung der Schwere bildet, sind ebenso

1j und x die Winkel der Bogen d und o, d0 mit der Verticalen, so sind die Componenten des Gewichtes
der Masse des betrachteten Elementes nach den drei Richtungen

n , edg , edd

Ag cos y oo,ndgd0 ; Ag cos n ço,ndpd0 ; Ag cos yoo ndgd.
Die Pressung in der Grenzfliche zwischen Flüssigkeit und Wand, oder in der freien Oberfläche,

wenn das betrachtete Element an dieser anliegt, sei P für die Flächeneinheit. Dann ist der daraus für
das Element sich ergebende Druck in der Richtung n gleich

Poo, dg d.
An der innern Begrenzungsflüche des betrachteten Elementes, welche der Wandflüche oder der freien
Oberflüche parallel ist, sei die Pressung p, welche von P um eine endliche Grüsse verschieden sein
kann, weil n nicht unendlich klein ist. Diese Flüche hat die Grósse

(e + n) (e, t n) dg 6,
wo die oberen Zeichen zu nehmen sind, wenn die Krümmungshalbmesser in die Flüssigkeit fallen,

 

  
  

 

MX 6 eee

Gewichte des betrachteten Flüssigkeitsvolums entspricht. Diese Pressungen parallel der Oberfläche der

Flüssigkeit werden aber wesentlich andere sein können als die nach der Normalen.

Tritt die Sphäre der Attraction über einen Theil der Oberfläche, welcher eine scharfe Kante

enthält, also z. B zum Theil über die freie Oberfläche, zum Theil über die an einer Wand des Gefässes

anliegende Oberfläche, so wird die Richtung der Attraction in anderer Weise bestimmt werden müssen.

Wir beschäftigen uns damit nicht, weil wir die Antwort auf diese Frage in dem Folgenden ‚nicht
nothwendig haben. ;

7. Nach diesen Vorbetrachtungen untersuchen wir das Gleichgewicht eines kleinen Flüssigkeits-

elementes, das an einer Wand oder der freien Oberfläche anliegt. Das Element begrenzen wir. auf

der Grenzfliche durch zwei durch den betrachteten Punkt gezogene Bogen ode und o,d0 der

Hauptkrümmungskreise der Grenzflüche in diesem Punkte, deren Halbmesser o und o, sein sollen; ferner

durch zwei zu jenen parallele Bogen. Durch die Normalen und diese Bogen legen wir Ebenen, und

schneiden endlich das Element, das zwischen diesen vier Ebenen liegt, durch eine in der Tiefe n unter

der Grenzflüche liegende parallele, d. h. überall von dieser gleich weit abstehende Fläche ab. Denkt
man alle Seiten dieses Elementes unendlich klein, so ist sein Volum

ee, nd dô,

und seine an einander stossenden Begrenzungsflächen stehen rechtwinklich unter einander.

Für n nehmen wir die Entfernung, in welcher von der Grenzfläche weg sowohl die Attraction der

Flüssigkeit als die Anziehung der Wand unmerklich wird, also eine unmessbar kleine Grösse, aber

strenge genommen keine unendlich kleine, wodurch die Rechnung den Charakter einer genüherten

bekommt.

Die Attraction der Flüssigkeit auf dieses Element kann, wenn A die Dichte der Flüssigkeit

bedeutet, durch

4Aoo.ndgpdo

vorgestellt werden, wo A eine von der Art der Flüssigkeit abhängige Constante ist. Die Richtung dieser

Kraft ist die Richtung der Normalen zur Grenzfläche in die Flüssigkeit, was kurz die Richtung n heissen
soll. Ihr direct entgegen wirkt die Attraction der Wand, welche ebenso durch

4Boo,ndgd8

vorgestellt werden kann, wo B eine von der Art der Wand und der Art der Flüssigkeit abhüngige

Constante ist.
In der Richtung von n ergibt sich hieraus die Kraft

4 (A—B) oo,ndgd0.

Bezeichnet man mit iy den Winkel, welchen n mit der Richtung der Schwere bildet, sind ebenso
1j und x die Winkel der Bogen d und o, d0 mit der Verticalen, so sind die Componenten des Gewichtes

der Masse des betrachteten Elementes nach den drei Richtungen

n , edg , edd
Ag cos y oo,ndgd0 ; Ag cos n ço,ndpd0 ; Ag cos yoo ndgd.

Die Pressung in der Grenzfliche zwischen Flüssigkeit und Wand, oder in der freien Oberfläche,

wenn das betrachtete Element an dieser anliegt, sei P für die Flächeneinheit. Dann ist der daraus für

das Element sich ergebende Druck in der Richtung n gleich

Poo, dg d.

An der innern Begrenzungsflüche des betrachteten Elementes, welche der Wandflüche oder der freien

Oberflüche parallel ist, sei die Pressung p, welche von P um eine endliche Grüsse verschieden sein

kann, weil n nicht unendlich klein ist. Diese Flüche hat die Grósse

(e + n) (e, t n) dg 6,
wo die oberen Zeichen zu nehmen sind, wenn die Krümmungshalbmesser in die Flüssigkeit fallen,

 
 



— "M ee

andernfalls die unteren. Lässt man hier das Glied mit n? weg, so erhält man den nach aussen, dem n

entgegenstehenden Druck
poo, dgd0-- p Ct e t e) ndgd6;

und es bleibt also von den Pressungen auf die zu n normalen Flüchen der nach innen gehende Druck
(P—p) eg, dg d0 —p Ct e t e.) ndgd6.

Nennt man S, die mittlere Pressung in der Fläche end q auf die Flächeneinheit, so dass der Druck
auf diese Begrenzungsflüche des betrachteten Elementes

S, end
ist, mit der Richtung g, d 0; so ist der Druck auf die gleich grosse dieser gegenüberliegende Grenzflüche

(S, 4- 1S de) end g
welcher mit g,d0 den Winkel c —d0 bildet. Aus beiden Drücken ergibt sich der Druck auf das
betrachtete Element in der Richtung von g, d 6 gleich

' ds,
i ondgd0

und in der Richtung von n
T S. ondgde,

wo wieder das obere oder das untere Zeichen zu nehmen ist, je nachdem o, in oder ausserhalb der

Flüssigkeit liegt.
Nennt man ebenso S die mittlere Pressung in der Begrenzungsfläche o,nd6 des betrachteten

Elementes, so erhält man in gleicher Weise den Druck auf dieses Element in der Richtung des Bogen-

elementes od) gleich ds
— ig Q,ndgd0,

'ünd in der Richtung der Normalen n gleich
c Soe,ndgd0.

Nachdem so die Componenten der Krüfte bestimmt sind, welche auf das betrachtete Flüssigkeits-
element einwirken, ergeben sich die drei Bedingungen des Gleichgewichtes, indem man mit oo, ndg d6

dividirt P—p 1 IN. ATAA—B) 4 ageos p+ TE —p (£2 = SE
n 01 e 01 e

ds 14dgcosm —— .—_-=—0 (1)
EAN d$ e

Sdgoos x — gt 47°
8. Ist z die verticale Tiefe des betrachteten Elementes unter einer beliebigen Horizontalebene,

so kann man edo cg c dA

setzen, und damit gibt die zweite der Gleichungen (1)
S = S, + 4g @—%), (2

wo S, die Pressung in der Stelle der Oberfläche der Flüssigkeit ist, welche auf der betrachteten
Krümmungslinie in der Tiefe z, unter der Horizontalebene liegt, von welcher die z gezühlt werden.

Auf einer gegebenen Krümmungslinie ändert sich also die Pressung S nur mit der verticalen Hóhe
wegen der Schwere der Flüssigkeit; die Krümmung hat keinen Einfluss darauf.Die dritte Gleichung gibt dasselbe für S,.^Wirhabenobengesehen,dasseinTheilchenderOberflüchenschichte nach allen Richtungen rechtwinklich zur Normalen n auf die Oberflüche gleich
stark angezogen wird; es werden also beim stabilen Gleichgewichte auch die Pressungen in allen diesen
Richtungen gleich gross sein müssen oder Sz. (3)
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9. Die erste der Gleichungen (1) bestimmt die Pressung der Flüssigkeit in der Entfernung n von
der Oberfläche weg, wo die Attractionen nicht mehr merklich sind. Man hat

p —P-4-4(A—B)n-- Agn cos y —(S-]- pn (+ : ta)
1

oder wenn man, weil n unmessbar klein sein soll,
4gn und pn gegen p

weglässt,
T . (4)
Qi

Hinsichtlich der doppelten Zeichen ist aus dem Obigen ersichtlich, dass das obere Zeichen zu nehmen
ist, wenn der betreffende Krümmungshalbmesser in die Flüssigkeit fällt, andernfalls das entgegengesetzte.

Ist man bis zur Entfernung n von der Oberfläche weg in das Innere der Flüssigkeit eingedrungen,
so ändert sich von hier weg im Innern der Flüssigkeit die Pressung nur durch die Schwere nach den
bekannten hydrostatischen Gesetzen. Für einen Punkt im Innern der Flüssigkeit, nicht in der Ober-
flächenschichte von der Dicke n, ist die Pressung p,, wenn z, die Tiefe dieses Punktes unter der
Ausgangsebene der z ist,

pompa go £P (D ne-sn Gt) C MN

P= Pad (AB) hat Sn (Ea

10. In der freien Oberfläche ist die äussere Pressung P constant; sind z und z/ die Coordinaten
zweier Punkte dieser freien Oberfläche, S und S’ die Pressungen in den Richtungen der Tangentialebenen
an diese Stellen; o, o, und o', o, die Krümmungshalbmesser der freien Oberfliche in diesen beiden
Punkten; so ergibt sich für die Pressung im Innern der Flüssigkeit in der Tiefe z, , indem man einmal
von dem einen Punkte der Oberfläche ausgeht, das anderemal von dem andern,

p = P+A4An — Sn (1x 1j + 4g (3 — 2) =
1

1—P-F4An— Sn (t — x 1) a6 0 — 2,
Qi 9

woraus

1 1 , 1 1Sn(+ 5%) +48 @— 7) Sut t)Q 0 9 Qu
folgt.

Gehört der Punkt in der Tiefe z’ einem ebenen und horizontalen Theile der freien Oberfläche an,
welche in einem sehr weiten Gefässe vorkommt, und zählt man die Tiefen z immer von dieser Horizontal-
ebene an, was im Folgenden immer geschehen soll, so erhält man

1 1
Sn (1 Hg Ag z. (5)

Die gekrümmte Oberfläche steht also höher oder tiefer als die horizontale in dem weiten Gefässe,
wenn S positiv ist, bei convexer oder concaver Oberfläche nach oben; umgekehrt ist es, wenn S negativ
ist, also in der Oberflächenschichte eine Spannung und keine Pressung vorhanden ist. Die Erfahrung
hat gelehrt, dass Flüssigkeiten mit concaver Oberfläche sich über den ebenen Theil der Oberfläche
heben, und sich mit convexer Oberfläche senken; es ist also S negativ, die Oberflächenschichte gespannt,
wie wir diess schon in Nro. 4 sahen.

11. Aus der Gleichung (5) sieht man zugleich, dass Sn mit 4gz vergleichbar ist, dass also
S gegen Ag z ausserordentlich gross ist, da o ein messbarer Krümmungshalbmesserist, n aber unmessbar
klein; man kann daher Ag z gegen S vernachlässigen, oder statt der Gleichung (2) setzen

S = Constant. (6)
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Ich bezeichne für das Folgende den Werth von Sn, welcher der freien Oberfläche angehört, durch
a?

und behalte das Zeichen Sn nur noch für die Pressung, welche der an der Wand anliegenden Flüssig-
keitsschichte angehört, bei. Die Gleichung (5) wird mit dieser Bezeichnung

(ot) = (7)
12. Das Verhältniss zwischen der Pressung Sn in der Wandschichte und der Spannung in der

Schichte an der freien Oberfläche ergibt sich aus der Betrachtung der Gleichgewichtsbedingungen für
ein Volum der Flüssigkeit, das theilweise durch die Wand des Gefässes, theilweise durch die freie
Oberfläche begrenzt ist. In einem Punkte M der freien Oberfläche, welcher -der Wand sehr nahe,
aber doch so weit von ihr entfernt liegt, dass dort die Anziehung der Wand unmerklich ist, ziehen wir
die Normale MN — n, auf die freie Oberfläche in die Flüssigkeit so weit, dass in N die Attraction
der Flüssigkeit nach allen Richtungen gleich gross ist. Dabei setzen wir voraus, es sei M so. gewählt,
dass auch in N die Anziehung der Wand noch unmerklich ist, oder dass die Normale N K auf die Wand,
gleich n -[- 1 grósser ist, als der Halbmesser der Attraction der Wand. Durch N ziehen wir in der
Ebene MNK eine parallele zur Wand NG, welche wir so weit verlängern, dass in der zu NK gezogenen
parallelen G-F die Attraction der Flüssigkeit überall in die Richtung FG fällt, wobei vorausgesetzt ist,
dass auch F G normal auf der Wand steht, was angenommen werden kann, da die Dimensionen alle nur
unmessbar klein genommen werden können. Durch FG legen wir eine Ebene, welche auf FKMNG
normal steht, durch NG eine zur Wand parallele, durch MN eine auf der freien Oberfläche normale
Ebene, und schliessen endlich den durch diese Flächen, durch die freie Oberfläche und die Wandfläche
begrenzten Raum durch eine zu FKMNG parallele Fliche ab. Für das Gleichgewicht der in diesem
Raume befindlichen Flüssigkeit, dessen Dimensionen man nach allen Richtungen als unmessbar klein
betrachten kann, ist nothwendig, dass die Summe aller mit der Wandfläche parallelen Componenten
der Kräfte gleich Null ist. Diese Bedingung gibt die Gleichung

2

Sn+pl+4g 5 cos m, n,) = 0,
wobei n, n, der Winkel ist, welchen die gegen die Flüssigkeit gerichteten Normalen auf die Wandfläche
und die freie Oberfläche mit einander bilden. In dieser Gleichung kommen die Attractionen der
Flüssigkeit und die Schwere nicht in Betracht, da sie dem Volumen proportional, Kleine der dritten
Ordnung sind, während die Drücke auf die Flächen Kleine der zweiten Ordnung. Da n und Kleine
derselben Ordnung sind, so ist auch pl gegen Sn ausserordentlich klein, und obige Gleichung lässt sich
daher schreiben: a

aher schreiben Sn+ 4g 55. eos (n, n) — 0. (8)

Sn ist daher negativ, eine Spannung, wenn n, n, ein spitzer Winkel ist; ist dagegen n, n, ein stumpfer
Winkel, so ist S n positiv, eine wirkliche Pressung. Das erste findet statt, wenn die freie Oberfläche an
der betrachteten Stelle nach aussen convex ist, das letzte für eine concave Oberflüche.

Die Summe der Kräfte normal zur Wandfläche wird
2

Ag T sin (n, nj) — ph + Ps cos (n, n) + Ph' = 0,

worin h die oben mit N G bezeichnete Lünge ist, s der Bogen der freien Oberfläche von M bis zur
Wand, h' die mit NG parallele Lànge der Wand, welche das oben betrachtete Volumen Flüssigkeit
begrenzt; P aber die Pressung auf die freie Oberfläche, P‘ die Pressung der Wandfläche gegen die
Flüssigkeit. Da aber h, s und h‘ unmessbar klein sind, so folgt aus dieser Bedingung, dass sin (n, n,)
auch unmessbar klein sein muss, dass also n, n, entweder 0 oder m sein muss, d. h. die freie
Oberflüche muss die Wandflüche berühren.

2
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2

Sn+pl+4g 5 cos m, n,) = 0,
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2

Ag T sin (n, nj) — ph + Ps cos (n, n) + Ph' = 0,
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Auf diesen Satz, welcher im Widerspruche mit den bisher gebräuchlichen Annahmen steht,
wonach der Winkel n, n, zwar ein bestimmter, für dieselbe Flüssigkeit und dieselbe Wand constanter
sein soll, der aber im Allgemeinen nicht 0 oder zr ist, komme ich nachher zurück. Aus ihmfolgt mit (8)

2

Sn — XY 4g z: (9)
wo das ‚obere oder das untere Zeichen gilt, je nachdem die’ freie Oberfläche an der Wandflüche convex
oder concav nach aussen ist.

13. Man nennt Depressionsvolum das Volum, welches durch die freie Oberfläche der Flüssig-
keit, eine verticale cylindrische Fläche durch die Begrenzungslinie dieser Oberfläche an der Wand und
endlich durch die Ebene z — 0, das Hauptniveau begrenzt ist, und nimmt dieses Depressionsvolum
positiv oder negativ, je nachdem es unter- oder oberhalb z = 0 liegt, d. h. je nachdem Depression oder
Erhebung stattfindet.

Dieses Depressionsvolum lässt ‘sich aus der Gestalt der freien Oberflüche der Flüssigkeit be-
stimmen. Bezeichnet man die Tiefe eines Punktes dieser freien Oberfläche unter dem oben ange-
nommenen Niveau z — 0 mit z, so hat man als Gleichung der freien Oberfläche (7)

iem
ist do ein Element dieser freien Oberfláche und n die Richtung der Normalen zu diesem Elemente in
die Flüssigkeit gezogen, so ist das Depressionsvolum

V=/[1de cos (n, z),
das Integral über die ganze freie. Oberfläche der Flüssigkeit ausgedehnt. Setzt man für z den obigen
Werth, so erhält man

v=3/ (111) cos (n, z) d o. (10)
Für ein Gefáss, dessen Wände an der Begrenzungslinie zwischen freier Oberfläche der Flüssigkeit

und Wandfläche zwei parallele verticale Ebenen bilden, ist die freie Oberfläche eine cylindrische mit
horizontalen Mantellinien; für sie wird der eine Krümmungshalbmesser unendlich gross, und man
kann setzen

ed (n, z) = do.
Damit wird das Depressionsvolum J

2 2

Voc fosa 24 0 — 7 Gin £ — sin 6),
wo f und f, die Werthe von n, z an den beiden Grenzlinien sind. Es ist aber B, — — p, daher das
Depressionsvolum

T Vexi-*a?. sin f. an

Für ein Gefäss, welches die Flüssigkeit in einer Rotationsfläche mit verticaler Axe begrenzt, ist
auch die freie Oberfläche der Flüssigkeit eine Rotationsfläche mit derselben Axe. Setzt man für diese

9, sin (n,Z) — x und od (1,Z) xd p — do,

so findet man für das Depressionsvolum
2 2

v=+5//&lt;0s 0,2 40,2 dg E 5, f/f 83 os (0,2) d (n z) dg
—+anrinp Far) o sin (n, z) d (n, z)

+ a? a fe sin (n, z) cos (n, z) d (n, z),
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was sich mit
dx = o d (n, z) cos (n, z)

auf das erste Glied reducirt. Daher
Neckar sin f. (12)

14. Tn der Gleichung (11) ist nach Nro. 12 8 — m und diese Gleichung wird

v= d: a , (13)

Die Bedeutung der Capillaritätsconstanten a” ergibt sich hiernach als das Depressionsvolum,
welches sich auf die Länge eins zwischen zwei parallelen verticalen Platten herstellt. Dieses ist, wie
man sieht, constant für dieselben Platten und dieselbe Flüssigkeit.

In der Gleichung (12) wird sin B für eine verticale cylindrische Röhre ebenfalls gleich 1. Daraus
ergibt sich a? wieder als das Depressionsvolum, das von der Länge 2 der Grenzlinie 2 r zz niedergehalten
wird. Ist die mittlere Hóhe dieses Depressionsvolums, der mittlere Werth von z, gleich h, so dass

V = rm

ist, so wird i
r' mhz a'.ræ oder

2

het 14)
oder dem Halbmesser der Róhre umgekehrt proportional, ein bekannter Satz.

Ist der Halbmesser der Röhre gleich 1, so ist
d echas

Die beiden Sátze (13) und (14) werden gewühnlich bei der Bestimmung der Capillaritátsconstanten
a? gebraucht, wozu man die Gleichung (T7) der freien Oberfläche ‚meist mit Annäherung bestimmt.
Diese Bestimmung der freien Oberflüche hat Poisson in seiner Théorie de l’action capillaire am
weitesten verfolgt, worauf hier verwiesen wird.

15. Wir bestimmen noch die verticale Componente des Druckes der Flüssigkeit auf das Gefüss,
welche dem Gewichte der in dem Gefüsse enthaltenen Flüssigkeit gleich sein wird. Das ist aber nur
der Fall, wenn die Flüssigkeit in ihrer freien Oberflüche die Wandberührt; ist diess nicht der Fall, was
durch Auftreten fremder Krüfte eintreten kann, so gilt der obige Satz in seiner Allgemeinheit
nicht mehr.

Auf die Gefüsswand geschieht der oben mit P bezeichnete Druck der Normalen n entgegen; die
Gefisswand wird von der Flüssigkeit mit der Kraft 4/B n auf die Flücheneinheit angezogen, diese
Kraft liegt in der Richtung von n. Daraus ergibt sich für das Element dw der Wandfläche in der
Richtung von z die Kraft

— (P — AB n) d e cos (n, z).

Zàhlt man wie oben die z von der horizontalen Ebene, in welcher die freie Oberfláche entweder
eben steht, oder wenn die Oberflüche gekrümmt ist, in einer mit dem Gefüsse communicirenden hin-
reichend weiten Rühre eben stehen würde, so hat man für einen Punkt der Gefüsswand, welcher in der
Tiefe z steht, aus (4)

I
0. ,

hierin ergibt sich p, wenn man von der freien ebenen Oberflüche ausgeht, aus (Nro. 10)

p=P, } 4An+4gz,
wo P, der Druck auf die Einheit der freien Oberfläche, etwa der Druck der Luft ist. Diess gibt

1
P—A4Bn=P, +Sn (+ ; + 1) + de1

und also den verticalen Druck auf die Wand des Gefässes

P=p—4(A—B)n+Sn (x d
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(a) —P, [cos (n, 2) do—sn f(£3%,) cos (n, z) do— 4g f 1c (n, z) d o.
Dabei sind alle Integrale über die ganze Gefüsswand, so weit diese mit der Flüssigkeit in Berührung
steht, auszudehnen.

Bedenkt man, dass dw cos (n, z) die Horizontalprojection des Flächenelementes do ist, positiv
oder negativ, je nachdem n, z ein spitzer oder ein stumpfer Winkel ist, so sieht man, dass das erste
Glied gleich dem Drucke der Atmosphüre auf die freie Oberfläche der Flüssigkeit ist. Diesem Drucke
gegenüber steht der Druck der Atmosphäre auf die Aussenseite des Gefässes, und beide Drucke heben
sich auf, oder genauer, es bleibt der Auftrieb der Luft, wenn man die Verschiedenheit von P, bedenkt.

Das letzte Glied gibt für alle Elemente dw, in welchen die Normale n mit z einen stumpfen Winkel
bildet, das positive Gewicht der Flüssigkeitssäule, welche über diesem Elemente stehen würde, wenn
die Flüssigkeitsoberfläche bei z — 0 wäre; für alle Elemente dæ der Wandfläche, in welchen n, z ein
spitzer Winkel ist, erhält man dasselbe Gewicht, aber negativ. Daraus ergibt sich, dass das dritte Glied
des obigen Ausdrucks das Gewicht der Flüssigkeit in dem Gefässe ist, mehr dem Gewichte einer
Flüssigkeitssäule, welche durch die freie Oberfläche der Flüssigkeit, eine vertikale cylindrische Fläche
durch die Begrenzungslinie dieser Oberfläche an der Wand und endlich durch die Ebene z — 0 begrenzt
ist. Dabei ist dieses Gewicht positiv oder negativ zu nehmen, je nachdem das beschriebene Volum,
welches oben das Depressionsvolum genannt wurde, unter- oder oberhalb z — 0 liegt, d. h. je
nachdem Depression oder Erhebung stattfindet.

Nennt man das Depressionsvolum V, so verlangt also der Satz, dass der vertikale Druck auf das
Gefiiss gleich dem Gewichte der in,ihm enthaltenen Fliissigkeit ist, dass das zweite Glied des obigen
Ausdrucks das Zuviel in dem dritten Gliede aufhebe, oder dass

af (arte) cas (m2) do ce dg V = 0 (15)
sei. s

Die Gleichung zeigt unmittelbar, dass jedes ebene Stück der Gefásswand, und jedes verticale
keinen Einfluss auf das Depressionsvolum hat.

16. Für ein Gefáss, das ganz geschlossen und vollständig mit Flüssigkeit erfüllt ist, gibt das
letzte Glied in dem Ausdrucke (a) der vorhergehenden Nummer oder

—4Ag f* cos (n, z) dw
das Gewicht der in dem Gefässe enthaltenen Flüssigkeit. Es muss also für ein solches Gefáss das

ite der Glieder des Ausdrucks (a) gleich Null werden, oder es ist

[Git x cos (n, Z) do
9 01

über die Oberfläche einer allseitig geschlossenen Fläche ausgedehnt gleich Null.
Theilt man diese Oberfläche nach irgend einer auf ihr in sich zurück laufenden Linie in zwei

Theile, so muss das obige Integral für den einen Theil dieser Oberfläche gleich und entgegengesetzt
sein dem Integrale für den andern Theil. Da aber der eine dieser beiden Theile beliebig abgeändert
werden kann, und das obige Integral doch immer dem Werthe des Integrals für den ungeänderten
zweiten Theil gleich aber entgegengesetzt sein muss, so kann überhaupt der Werth dieses Integrals für
einen dieser beiden Theile nur von dem abhängen, was bei jenen Abünderungen unverändert bleiben
muss, das ist von der Grenzlinie beider Theile und von der Neigung der letzten Theile der Fläche an

zwe

dieser Grenzlinie.
Wird diess in die Gleichung (10) übertragen, so sieht man, dass das Depressionsvolum nur

abhängig sein kann, ausser von dem Werthe von Sn, von der Grenzlinie zwischen der freien Oberfläche
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der Flüssigkeit und der Wandfläche und von den Neigungen, welche die Wandflüche zunüchst dieser
Grenzlinie gegen die Verticale hat.

Poisson hat das obige Integral allgemein analytisch entwickelt; hier will ich diess nur für zwei
einfachere Fälle thun, welche alles umschliessen, was in den Anwendungen gewóhnlich vorkommt.

Es sei zuerst die Gefüsswand eine cylindrische Flüche von beliebiger Krümmung mit horizontalen
Mantellinien, und in horizontaler Richtung unbegrenzt. Hier ist der eine der Krümmungshalbmesser
unendlich gross, und man kann setzen

«tod(n ) — do,
wobei die Lange des Elementes in der Richtung der Mantellinien gleich eins gedacht ist. Damit wird

dgv=sSn yf cos (n, z) d (n, z)
— Sn (sin e, — sin «) (16)

wo «, und « die Werthe von n, Z für die beiden Elemente der Wandflüche sind, in welchen die
Flüssigkeit die Wand verlässt. Sind diese beiden Elemente einander parallel, so ist

&amp;, -— mde
und daher

4gV = —28n sin a. (17)

Sind die beiden Austrittselemente vertical, so ist
dev = --25Sn. (18)

Als zweiten Fall betrachten wir ein Gefäss, das durch eine Rotationsfläche mit verticaler Axe
begrenzt ist. Sind x und z die horizontale und verticale Coordinate eines Punktes der Meridiancurve
ist der Krümmungshalbmesser der Meridiancurve an dieser Stelle, so ist

— 9, sin (n, z) — x,

wenn der Winkel n, z vom positiven z nach der Seite des positiven x gerechnet wird.
Setzt man nun

de = + ed (n,7) - xdg,

so wird, weil hier g, immer in die Flüssigkeit fällt,

LG i) cos (n, Z) do = ff x cos (nm) 10,24gx ff cos (n, Z) d (n, z) dg.
Die Integration nach q geht von 0 bis 27: und führt sich ohne Weiteres aus. Integrirt man

hierauf in dem ersten Gliede rechts theilweise, so erhält man
1 1 | : dx

fl cos (n,2) do = mr sina—2a f sin Q2 d (tz f cost d.
Man hat aber

— dx geos(mz)d (mz),

womit sich, wenn man in dem letzten Gliede für x wieder — 9o, sin (n, z) substituirt, die beiden letzten

Glieder aufheben.
An der Grenzlinie zwischen der freien Oberfläche der Flüssigkeit und der Wandfläche ist der

Werth von n, z der oben gebrauchte « und r ist der Halbmesser dieser Grenzlinie, welche, weil alles
symmetrisch um die Axe z ist, eine horizontale Kreislinie ist. Damit wird

. 4g V — — Sn.2nr sina. (19)

Man sieht an den Ausdrücken (19) und (16) bewahrheitet, was oben ausgesprochen wurde, dass
das Depressionsvolum nur von der Grenzlinie zwischen freier Oberflüche und Wandfliche und von der
Neigung der Wandfläche an dieser Grenzlinie abhängt. :

17. Vergleicht man diese Werthe des Depressionsvolums mit den in (Nro. 13) für gleiche
Umstände gefundenen, So ergibt sich aus (11) und (18)
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2Sn ; :

gh z-a*sim fi (20)
und aus (12) und (19)

2,, 38m sin --173* gin f (21)

Die Gleichung (8) dagegen gibt für den ersten Fall, bei welchem je nachdem die freie Oberflüche
der Flüssigkeit convex oder concav nach oben ist,

n,n, = n +ß
2

2is^Ro Sn 4g 5 sin f — 0,
was mit (20) übereinstimmt.

Für den zweiten der betrachteten Fälle ist
(n) — Br «,

und damit gibt die Gleichung (8)
2Sn =

dz = — A^ eos (f -- a),

was mit (21) verglichen gibt
eos (Bi e) - T sind d3 sin 0%"

el tos ec siu sino es 4 SÉ.
sine

sin « eos &amp; — - tan f (1 — sin «?) oder

tane zi tan ff.
Das obere Zeichen gibt « — 8, oder die Normale auf die freie Oberflüche der Flüssigkeit und die

Normale auf die Wandflüche fallen in der Begrenzungslinie zusammen, die convexe Oberflüche der
Flüssigkeit berührt die Wand. Das untere Zeichen gibt

a-— a —f,

die beiden Normalen fallen nach entgegengesetzten Richtungen, oder die concave Oberflüche der
Flüssigkeit berührt die Wand ebenfalls. Das wurde schon in (Nro. 12) am Ende auf anderem Wege
gefunden, und führte dort zu der Gleichung (9)

ie a?

Sn= 44g. 2"
Ist aber « = 90°, so kann auch aus diesem zweiten Falle nichts über den Werth von n, n, geschlossen
werden.

18. Wir beschäftigen uns noch mit dem in (Nro. 12) aufgestellten Satze, welcher sagt: die freie
Oberfläche der Flüssigkeit berührt die Wandfláche.

Die allgemein angenommene Lehre ist die, dass die freie Oberfläche der Flüssigkeit mit der
Wandfläche einen bestimmten für dieselbe Flüssigkeit und dieselbe Wand constanten Winkel bilde.
"Diesen Satz hat, wie es scheint, Thomas Young zuerst aufgestellt. Er sagt in seinem Essay on the
Cohesion of Fluids (Philosophical Transactions for the year 1805, pag. 66): „But it is necessary to
„premise one observation , which appears to be new, and which is equally consistent with theory and
with experiment: there is an appropriate angle of contact between the surfaces of the fluid, exposed to
the air, and to the solid. This angle, for glass and water, and in all cases where a solid is perfectly
»wetted by a fluid, is evanescent: for glass and mercury, it is about 140°, in common A and
„when the mercury is moderately clean.“

: In dem Abschnitte ,VII. Cohesive Attraction of Solids and Fluids* pag. 82 wird der Satz
abgeleitet, dass ein Gleichgewicht der Oberfláchenkráfte stattfinde, wenn die Oberfláche der Flüssigkeit
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mit der Oberfläche der Wand einen bestimmten Winkel bilde, dessen Sinus versus zu dem Durchmesser
in demselben Verhältnisse steht, in welchem die gegenseitige Attraction der flüssigen und der festen
Theile zu der Attraction der flüssigen Theile unter sich.

Von. der Ableitung dieses Satzes sagt Young (pag. 85): „Althoug the whole of this reasoning on
„the attraction of solids is to be considered rather as an approximation than as a strict demonstration,
„yet we are amply justified in concluding, that all the phenomema of capillary action may be accurately
„explained and mathematically demonstrated from the general law of the equable tension of the surface
„of a fluid, together with the consideration of the angle of the contact appropriate to every combination
of a fluid with a solid.*

Da diese Ableitung von Young selbst nicht für eine stricte Demonstration ausgegeben wird, so
will ich darüber nur das bemerken, dass Young Kräfte betrachtete, für welche man die Gleichgewichts-
bedingung (8) ;

Sn4- 4g t eos (n, n) — 0
aufstellen kann. Dann aber setzt er die Pressung Sn zusammen aus der Anziehung der Wand oberhalb
der Flüssigkeit auf diese, und der Spannung der an der Wand anliegenden Flüssigkeit, und von der
letzten setzt er voraus, sie sei gleich der Anziehung der Flüssigkeit auf sich selbst weniger der Anziehung
der Theile der Flüssigkeit und der Wandtheile. Die Ableitung dieses Satzes wird aber Niemand als
eine überzeugende ansehen.

In dem Course of lectures on natural philosophy von Young kommt nichts Bestimmteres über den
Randwinkel vor.

19. Poisson gibt zur Bestimmung dieses Randwinkels in seiner Nouvelle théorie de l'action
capillaire, Paris 1831 (pag. 93) die Formel

q— à — (q-F 4) eos o
worin c« der Winkel ist, welcher bei mir in Nro. 12 mit n,n, bezeichnet ist. Dabei ist q eine Constante,
welche nur von der Art der Flüssigkeit und ihrer Dichte abhángt; q, hüngt ebenso nur von der Art der
Flüssigkeit und ihrer Dichte in der Schichte an ihrer freien Oberfläche ab; &amp; endlich ist eine Constante,
welche von der Dichte der Flüssigkeit in der an der Wand anliegenden Schichte abhüngt, und desshalb
von der Art der Wand. Ein Weiteres über diese Constanten lernt man aber aus den Integralformeln
von Poisson mit unbekannten Functionen nicht kennen. Diese Formel ist nichts anderes als die
Formel (8) in Nro. 12 in einer andern, aber nicht verstindlicheren Form. Die weiteren Folgerungen,
welche ich in Nro. 12 machte, und welche zu dem Satze n,n, = 0 oder — z führten, hat Poisson
nicht angestellt, ebenso wenig die zu dem gleichen Satze führenden Betrachtungen in Nro. 13 bis 17.

90. Eine theoretische Bestimmung des Randwinkels haben wir noch von Gauss in der Abhand-
lung „Principia generalia theoriae figurae fluidorum in statu aequilibrii^. Commentationes societatis
regiae scientiarum Gottingensis recensiores. Vol. VII. ad a. 1828—1832.

Der Winkel, welcher bei mir mit n, ny bezeichnet ist, heisst bei Gauss i, und für diesen Winkel

gibt Gauss den Werth (pag. 80) ;; 2cos i Win dci dubi iu.
« 2 c

für die Gleichung der freien Oberfläche gibt Gauss
1 1

z=— «a (Rt)
wo R und R/ die Krümmungshalbmesser der Oberfläche sind, an der Stelle, welche in der Höhe z über
der Hauptniveauebene liegt, in welcher in einem communicirenden weiten Gefässe die ebene Oberfläche
sich findet, diese Krümmungshalbmesser positiv oder negativ genommen, je nachdem sie ausserhalb oder
innerhalb der Flüssigkeit liegen.
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Berechnet man mit dieser Formel, welche, wie man sieht, mit der Formel (7) übereinstimmt, wenn

man a für e « setzt, das Depressionsvolum für eine cylindrische verticale Röhre, so erhält man (17)
N z9«aers sin,

wo B der Winkel ist, welchen die Normale auf die freie Oberfläche der Flüssigkeit am Rande mit der
Verticalen abwürts bildet, diesen Winkel von der Verticalen bis zur Normalen in die Flüssigkeit durch
diese gemessen.

Diess gibt für die convexe und für die concave freie Oberfláche der Flüssigkeit
i — 90"— f und sin f — cos i.

Für dieses Depressionsvolum leitet Gauss aus seiner Theorie die Formel für verticale Róhren
ah = (288—«a) b

ab (pag. 67), wobei ah das obige V mit entgegengesetztem Zeichen ist, indem bei Gauss das Erhebungs-
volum positiv, das Depressionsvolum dagegen negativ genommen ist. Durch Gleichsetzung dieser beiden
Werthe von. V erhält man eine identische Gleichung, woraus nichts weiter geschlossen werden kann.
Ganz ebenso habe ich (in Nro. 16) bei der Betrachtung einer verticalen Röhre keine Bestimmung über
den Randwinkel erhalten. Aber die in dem Werthe von cos i vorkommenden Grössen x&amp; und f sind
auch hier durch Integrationen mit unbekannten Functionen erhalten, von welchen man, so lange diese
Functionen nicht bekannt sind, nicht wissen kann, ob sie zulässig sind oder nicht. Damit geht aus der

Gleichung 66289
eo TG

nicht mehr hervor, als aus der Gleichung (8) in Nro. 12.
21. Directe experimentelle Bestimmungen über den Randwinkel bei Glas und Quecksilber hat

man neben einigen ülteren besonders von G. Quincke (Poggendorffs Annalen 105. S. 1). Durch
verschiedene Beobachtungsmethoden erhielt Quincke Werthe für den Randwinkel des reinen Queck-
silbers und des reinen Glases, welche zwischen 27^ und 57^ liegen, und also keineswegs einen constanten
Werth; auch ànderte sich dieser Winkel bei demselben. Versuche mit der Zeit. Quincke schliesst
daraus, dass noch andere Krüfte vorhanden seien, welche diese Erscheinung modificiren und keinen
Gleichgewichtszustand zu Stande kommen lassen. Mir scheint, dass neben einigen andern Ursachen,
welche mitwirken kónnen, es ganz besonders die Elektricitát ist, welche durch Berührung von Quecksilber
und Glas erregt wird, welche bekanntlich sehr bedeutend ist, und welche durch geringe Temperatur-
verschiedenheiten beider sich berührenden Kórper sich bedeutend modificirt. Die in dem Glase erregte
Elektricitit verbreitet sich über die mit dem Quecksilber in Berührung stehende Wandflüche hinaus
und so entsteht von der freien Wandflüche her noch eine anziehende Kraft auf das Quecksilber, welche
den Randwinkel von 0°, was er ohne die, Elektricität sein sollte, grösser macht, und um so grösser, je
stärker die entwickelte Elektricität ist. Die Feuchtigkeit der Luft wird auf Verminderung des Rand-
winkels hinarbeiten; bei feuchter Platte wird der Randwinkel Null.

22. Berechnet man die Werthe der Constanten a aus den Versuchen von Quincke, indem man
den Randwinkel gleich Null setzt, und die Einwirkung der Elektricitüt auf die Hóhe der von Quincke
gemessenen Tropfen als unbedeutend voraussetzt, so stimmen diese Werthe von a unter sich besser
überein, als die mit dem Randwinkel berechneten. So bestimmt Quincke aus 4 Tropfendicken (S. 37
der angeführten Abhandlung) mit dem Randwinkel 44° 30’ die Constante a im Mittel gleich 2,6369; aus
einem Versuche mit einer benetzten Platte (S. 38) und dem Randwinkel 0 ergibt sich a = 2,469.
Berechnet man aber a aus den ersten Versuchen unter der Voraussetzung der Randwinkel sei 0, die
Constante a, so erhält man 2,4405, was mit dem an der benetzten Platte gefundenen Werthe bei Weitem
besser stimmt, als der von Quincke berechnete Werth. Aehnliches ergibt sich auch aus den Messungen
der Depression des Quecksilbers, wenn dieses in capillaren Rôhren mit Wasser oder Weingeist überdeckt
ist, welche Gay-Lussac anstellte, und welche Poisson (a. a. O. pag. 146) mittheilt.

cos i —
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Schul-Nachrichten.
Im Januar 1861 ist der Lehrer für katholische Religion, Pfarrer. Platz, durch Vicar Herzer

ersetzt worden.
Der Repetent und Assistent bei dem chemischen Unterricht. Dr. Hallwachs ist mit dem Schluss

des Schuljahrs 18°%,, ausgetreten. Seine Stelle hat mit Beginn des neuen Schuljahrs Dr. Ülsmann
übernommen. — Der zweite Assistent für Chemie, Elwert, hat zu Anfang Juli's eine Anstellung in einer
chemischen Fabrik angetreten und den bisherigen Zógling der Anstalt Melchior zum Nachfolger
erhalten. — Die Stelle eines Assistenten für Naturgeschichte ist zu Anfang des Schuljahrs an den
frühern Schüler Warth übergegangen.

Als Schenkungen sind der polytechnischen Schule im abgelaufenen Schuljahr zu Theil geworden:
1) durch die Gnade SEINER MAJESTÁT DES KÜNIGS ein astronomischer Atlas; 2) vom K. W. Mini-
sterium des Innern: ,Bildliche Darstellung der Materialverwendungen bei Unterhaltung der Staats-
strassen des Kónigreichs Württemberg im Jahr 1860"; 3) von Herrn Finanzrath Fischer in Stuttgart
aus dem Nachlasse seines verstorbenen Vaters, des Oberbauraths v. Fischer, welcher bis zum Jahr 1852
an der polytechnischen Schule als deren Vorstand segensreich gewirkt hatte: eine umfangreiche Samm-
lung werthvoller Zeichnungen und Bücher (zusammen 55 Nummern mit 471 einzelnen Gegenstánden);
4) von Früulein Louise Kurtz in Stuttgart aus dem Nachlasse ihres verstorbenen Bruders, des Gold-
waarenfabrikanten Kurtz: zwei im besten Stande befindliche Probirwaagen nebst einer Sammlung von
Apparaten zu chemischen Gold- und Silberproben; 5) vom Directorium der Kónigl. Bau- Akademie
in Berlin: ein Exemplar einer autographirten Sammlung von Skizzen architektonischer und technischer
Objecte, der Frucht einer akademischen Studienreise. — Die polytechnische Schule fühlt sich verpflichtet,
ihrer Dankbarkeit für die empfangenen Beweise von Huld und Wohlwollen auch óffentlich Ausdruck
zu geben.

Lehrer-Personal
a) Hauptiehrer.

Professor Dr. Bernhard Gugler, Rector der Schule. (Descriptive und analytische Geometrie.)
Professor Dr. med. Johann Gottlob v. Kurr, Oberstudienrath. (Mineralogie und Geognosie, Zoologie,

Botanik; Baumaterialienlehre.)
Professor Dr. Hermann v. Fehling. (Allgemeine und praktische Chemie; chemische Technologie.)
Professor Christian Müller. (Maschinenbau, Maschinenzeichnen.)
Professor Gustav Adolf Hánel. (Strassen-, Eisenbahn-, Brücken- und Wasserbau.)
Professor Dr. Carl Holtzmann. (Physik und Mechanik.)
Professor Carl Wilhelm Baur. (Praktische Geometrie, Trigonometrie, Analysis.)
Professor Carl Kurtz. (Freihandzeichnen.)
Professor Christian Heinrich Sehmidt. (Mechanische Technologie, populäre Mechanik; Feuerungskunde.)
Professor Christian Leins, Oberbaurath. (Bauentwürfe.)
Professor Wilhelm Báumer. (Architekturzeichnen; Geschichte der Baukunst.)
Professor Emil Denzel. (Geschichte, Geographie, deutsche Sprache und Literatur.)
Professor Alexander Tritschler. (Bauconstruktionslehre, Hochbaukunde, Baukostenberechnung.)
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b) Weitere Lehrer.
Professor Heinrich Wilhelm Brutzer. (Handelsfücher.)
Professor Otto Hólder. (Franzósische Sprache.)
Professor Ludwig Gantter. (Englische Sprache.)
Professor Dr. Máhrlen. (Nationalókonomie.)
Philipp Runzler. (Italienische Sprache.)
Modelleur Carl Plock. (Modelliren.)
Professor Paul Wirth. (Ornamentenzeichnen.)
Obergeometer Wall. (Praktische Geometrie.)
Dr. Paul Zech. (Experimentalphysik.)
Dr. Hermann Ülsmann. (Analytische Chemie.)
Apotheker Kübler. (Pharmakognosie.)
Dr. Müller, Consistorialrath und Garnisonsprediger. (Evangelischer Religionsunterricht.)
Vicar Herzer. (Katholischer Religionsunterricht.)

c) Lehrer in den Werkstätten.

Mechaniker Schweizer. (Mechanische Werkstätte.)
Modellschreiner Halmhuber. (Holzmodellirwerkstätte.)

d) Repetenten und Assistenten.
Dr. Paul Zech (s. oben), für Physik und Mechanik.
Wilhelm Fischer, für praktische Geometrie und reine Mathematik.
Dr. Moritz Baur, für descriptive Geometrie und reine Mathematik.
Dr. Hermann Ülsmann(s. oben), für Chemie.
Albert Melchior, zweiter Assistent für Chemie.
Hugo Warth, für Naturgeschichte.
Jacob Wagner, Assistent für Maschinenconstruktion; zugleich technischer Zeichner.

Ausserdemsind an der Schule angestellt:
ein Cassier,
zwei Schuldiener,
ein Diener für das chemische Laboratorium.

Schüler.
In dem abgelaufenen Schuljahr ist die Anstalt von 270 Schülern (darunter 33 Auslünder) besucht

worden.
Die Schüler vertheilen sich unter die verschiedenen Hauptberufsarten wie folgt:

a) Mechanische Technik (Architekten, Ingenieure, Mechaniker) | . . . . . . . 141

b) Chemische Technik (Berg- und Hüttenleute, Fabrikanten, Pharmazeuten . . . 51
6) Handelsfacis are Pte rur ve orm o cr ERR eq seio OT

d) Lehrfach use 1e re sebum curo nii uo sic. en wi. 19

e) Anderweitigen Berufs. 5... ente Ne e auc Ru Dea 38

f) Noch unbestimmten Berufs. ^. . … +" + ste er A melee o a 5

270
AEAA-RAO- DA
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Schliesslich beehre ich mich, im Auftrag des Lehrercollegiums. Gönner und Freunde unserer

Anstalt zu der am 13. und 14. September stattfindenden Prüfung, mit welcher eine Ausstellung

graphischer und plastischer Arbeiten verbunden sein wird, geziemend einzuladen.

Stuttgart, im September 1861.

Im Namen des Rectorats und sämmtlicher Lehrer:

Carl Holtzmann.

N13&lt;&gt;&gt;30 77952 3 024

WLB Stuttgart
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